

Appears in

Pr

oceedings, IASTED International Confer

ence on Softwar

e Engineering and

Applications (SEA) 2002

,

November 4-6, 2002, Cambridge, MA, USA.

REWRITING REQUIREMENTS FOR DESIGN

James Kirby, Jr.
Code 5546

Naval Research Laboratory
Washington, DC 20375 USA

ABSTRACT
Maintaining consistency between requirements and the
design developed to satisfy them is both important and dif-
ficult. Maintaining consistency is important to satisfying
stakeholders' desires, which the requirements express.
Much of the difficulty of maintaining consistency stems
from having redundant descriptions of requirements deci-
sions—one in the requirements document and a second in
the design document—typically recorded in widely diver-
gent languages. To ameliorate this problem, we write
requirements and design in such a way that requirements
decisions and their expression in the requirements docu-
ment are incorporated directly into the design document,
which organizes the decisions and includes additional—
design—decisions.

KEY WORDS
Software Requirements, Software Design, Software Meth-
odologies, Software Engineering

1. Introduction
Often in development, decisions about required behav-

ior are written down several times—e.g., in requirements,
design, code—usually in different notations and languages
(e.g., prose, UML, C). For stakeholders to have confidence
that their needs—expressed in requirements—will be met,
developers must be able to maintain and demonstrate con-
sistency between requirements and the design. Maintaining
and demonstrating the consistency of multiple representa-
tions of requirements decisions, in different languages
poses a significant challenge [1].

This paper describes an approach to ensuring consis-
tency between requirements and design that involves repre-
senting the decisions made in developing requirements and
design in a way that should reduce the effort required to
demonstrate and maintain consistency. The next section dis-
cusses A-7 software requirements and design and the
refinements that several teams of researchers have made to
the requirements model. Subsequent sections discuss the
light control example; the system requirements, system
design, and software design of the light control system; and
why we have chosen this particular organization.

2. A-7 and SCR
The approach described in this paper builds on the A-7

and SCR work in requirements and design. This section
begins with a discussion of A-7 software requirements and

design. While the term SCR (for Software Cost Reduction)
was coined to refer to this work, we reserve the term SCR
for the subsequent research into requirements and system
design that is described following the discussion of the A-7
work (though some of those researchers don’t use the term
themselves).

2.1. A-7 Software Requirements
While there is more to A-7 requirements [2, 3], this

paper focuses on its recording of behavioral requirements,
the externally visible behavior the software is required to
exhibit. The sections of the A-7 requirements that contrib-
ute to recording behavioral requirements are Hardware
Interfaces, Modes of Operation, Software Functions, and
Glossary. For each device input or output that changes
value independently of other inputs or outputs, Hardware
Interfaces contains an input or output variable declaration.
The values the software sends to the output variables is the
required behavior of the software.

Software Functions describes how the software should
set the output variables—the required behavior of the soft-
ware. For each output there is one software function that
specifies its value. To avoid describing an implementation,
the software functions are written in terms of conditions
and events defined on aircraft operating conditions. “Con-
ditions are predicates that characterize some aspect of the
system for a measurable period of time.” “An event occurs
when the value of a condition changes from true to false or
vice versa.” [3] For example, altitude > 500 is a condition
that is true while aircraft altitude is greater than 500 feet
and is false otherwise. The event @T(altitude > 500)
denotes the instant when the condition altitude > 500
becomes true.

To capture the software functions’ dependence on
state, Modes of Operations defines classes of system state,
called modes. The history of execution determines the
mode of the system. Modes of Operation gives “the initial
mode of the system and the set of events that cause transi-
tion between any pair of modes” [3].

Special tables specify the functions in Software Func-
tions. They are written in such a way that it is easy to
inspect them for certain types of common errors, e.g.,
incompleteness, inconsistency. When the system mode and
the truth of one of several conditions determines the value
of an output variable, a condition table specifies the func-

tion.When the system mode and occurrences of particular
events determine the value of an output variable, an event
table specifies the function.

2.2. A-7 Software Design
This paper focuses on a portion of the A-7 design: on

the decomposition of the software into components—called
modules—and on the behavior of each component, which
are described, respectively, by a software module guide and
a set of specifications of module behavior. The information
hiding principle [4] guides the decomposition described in
the software module guide. Each module is characterized
by a secret, a decision that designers judge is likely to
change independently. It is the responsibility of the module
to encapsulate or hide the decision. When the decision
changes, only the module that hides the decision should be
affected (or a small number of easily identifiable modules).

The structure of the module guide can be represented
as a tree that decomposes the software into modules. Each
module is a work assignment for one or more programmers.
The software is decomposed until each leaf module consti-
tutes a suitable work assignment. A non-leaf module is
composed of the set of work assignments described by the
modules that are its children in the tree.

The secret of each module—the decision that it hides
from other modules—distinguishes its responsibility from
that of other modules. Listed below are the secrets of the
top three modules for the A-7 [5].

• Hardware-Hiding Module. The Hardware-Hiding
Module includes the programs that need to be changed
if any part of the hardware is replaced by a new unit
with a different hardware/software interface but with
the same general capabilities. This module implements
“virtual hardware” or an abstract device that is used by
the rest of the software. The primary secrets of this
module are the hardware/software interfaces. The sec-
ondary secrets of this module are the data structures
and algorithms used to implement the virtual hardware.

• Behavior-Hiding Module. The Behavior-Hiding
Module includes programs that need to be changed if
there are changes in the sections of the requirements
document that describe the required behavior. The con-
tent of those sections is the primary secret of this mod-
ule. These programs determine the values to be sent to
the virtual output devices provided by the Hardware-
Hiding Module.

• Software Decision Module. The Software Decision
Module hides software design decisions that are based
upon mathematical theorems, physical facts, and pro-
gramming considerations such as algorithmic effi-
ciency and accuracy. The secrets of this module are not
described in the requirements document.

Together, the three modules constitute the complete set
of work assignments for the A-7 programmers. Note that

they take responsibility for, respectively, the A-7 hardware,
the externally visible behavior of the A-7 software, and
everything else (i.e., decisions left to the software design-
ers). The remainder of this paper shall not be concerned
with the Software Decision Module (the “everything else”).

Each specification of module behavior specifies the
behavior of a set of programs. The set of programs may
either consist of programs that are usable by other modules,
in which case the programs are called the interface of the
module and the specification is referred to as an abstract
interface, or they may consist of programs that use pro-
grams in other modules to set the values of the virtual
device output variables (required externally visible behav-
ior of the software), in which case the specification is
referred to as a function driver.

This paper focuses on modules responsible for hiding
decisions recorded by the requirements: Device Interface
(which is a submodule of Hardware-Hiding), System Value,
Mode Determination, and Function Driver (which are sub-
modules of Behavior-Hiding). Each submodule of the
Device Interface Module defines a virtual device that hides
details of a physical device described in the requirements
that the designers judged were likely to change indepen-
dently. There need not be a one-to-one correspondence
between a physical device and a virtual device. One physi-
cal device that has two aspects the designers judge are
likely to change independently may be represented by two
virtual devices. Two physically distinct devices that are
always replaced together may be represented by a single
virtual device. The programs on the abstract interface allow
users to accept inputs from and to send outputs to a device.
The interface can also notify users of specified changes in
the device (e.g., device failure) or in a value that it mea-
sures (e.g., for an altimeter, altitude becomes greater than
500 feet). Each submodule defines a set of terms that
describe aircraft operating conditions and the state of the
aircraft’s devices. The abstract interface uses the terms to
describe the inputs from devices and the effects of outputs
sent to devices. These terms are also used by specifications
of other modules (e.g., Function Driver submodules).

Submodules of the System Value Module compute val-
ues that can be used by other modules. The submodules
hide the rules in the requirements that define the values.
Like the Device Interface Module, all the values provided
by the module represent either aircraft operating conditions
(e.g, the latitude and longitude of some point on the earth,
how long the aircraft will take to fly to some specified point
on the earth) or the state of some device (e.g., whether “the
Air Data computer is functioning and producing current and
reasonable altitude readings” [6]). And like Device Inter-
face, the submodule defines terms representing aircraft
operating conditions and device state that it uses to describe
the values it returns to its users.

The interface of the Mode Determination Module pro-
vides programs that allow users to determine whether the
2

system is in a particular mode and that notify users when
the system enters or exits a specified mode. The primary
secrets of the module are the rules describing mode transi-
tions in the requirements.

The Function Driver specifications, which hide the
rules recorded in requirements determining the values of
the output variables, differ from other module specifica-
tions in that they do not have an abstract interface: function
drivers are not used by other programs. While their form is
similar to the table functions in the A-7 software require-
ments, they differ from the software requirement functions
in several ways. First, a function driver controls virtual out-
puts (as opposed to the physical—though abstract—outputs
identified in the software requirements specification) for a
virtual device defined by a submodule of Device Interface.
Second, a function driver explicitly identifies the Device
Interface program that sets the virtual device output vari-
able whose value it specifies. Third, instead of referring to
the terms describing aircraft operating conditions that the
software requirements’ Glossary defines, function drivers
refer to analogous terms that other module specifications
define.

2.3. SCR System Requirements and
System Design
In the Four-Variable Model described in [7], Parnas

and Madey abstract from the A-7 software requirements
model and extend it to cover system requirements. Mathe-
matical variables representing physical quantities in the
system environment replace device inputs and outputs for
describing required behavior. Mathematical relations on
vectors of time functions replace the conditions, events,
modes, and tables of the A-7 requirements. Parnas and
Madey define a System Requirements Document that spec-
ifies the externally visible behavior required of the system,
and a System Design Document that specifies the behavior
required of the system’s peripheral devices (Parnas and
Madey consider systems with several computers and
describe them and communication among them in the Sys-
tem Design Document; this paper assumes a single com-
puter).

Writing in terms of physical quantities in the system’s
environment describes system—as opposed to software—
behavior. Instead of specifying the values the software
should send to the output devices, the model specifies the
required values of mathematical variables, called controlled
variables, that denote physical quantities in the system’s
environment (e.g., the position of an actuator, the location
of an icon in a display to an operator) that the system must
control. Parnas and Madey specify the required values of
the controlled variables in terms of mathematical variables,
called monitored variables, which also denote physical
quantities in the system’s environment. They capture sys-
tem design decisions by specifying the behavior of the
input and output devices. Similar to the A-7 model, the
specification defines input and output variables. Specifying

the values of the inputs in terms of the monitored variables,
and the effects of the outputs in terms of the controlled vari-
ables complete the specification of device behavior.

Instead of using tabular functions to specify required
behavior, [7] leaves open the form that the functions
describing required behavior of particular systems should
take. To describe precisely the information that the System
Requirements and System Design documents record, Par-
nas and Madey define four relations among the monitored,
controlled, input, and output variables. The relation

REQ: M → C,

a relation from all possible histories (where possible means
allowed by environmental constraints) of the monitored
variables to all possible histories of the controlled variables,
describes required system behavior. M, the domain of REQ,
is a set of vectors. For each monitored variable, a vector has
one element, a time function. The time function, which
specifies the value of the monitored variable as a function
of time, describes a possible history of that monitored vari-
able. Each vector of monitored variable time functions
describes a possible history of all of the monitored vari-
ables. M is the set of all possible histories of the monitored
variables. C, the range of REQ, is a similar set of vectors of
time functions specifying possible histories of the con-
trolled variables. For each possible history of the monitored
variables in the set M, REQ specifies one or more possible
histories of the controlled variables in the set C. REQ is a
relation and not a function to allow for the small errors
inherent to real implementations. Below, this paper will use
similar relations on vectors of time functions for other vari-
ables to describe the contents of other documents.

It is often useful to specify constraints that the environ-
ment of the system (e.g, physical laws, the behavior of
other systems) imposes on its behavior. The relation

NAT: M → C

captures those constraints. For each possible history of the
monitored variables, it specifies which possible histories of
the controlled variables the environment allows.

Similar to M and C, I and O are sets of possible histo-
ries of the system’s input and output devices, respectively.
The relation

IN: M → I

specifies the behavior of the input devices; the relation

OUT: O → C

specifies the behavior of the output devices.

To provide a more precise semantics of SCR specifica-
tions and to facilitate mechanized analysis of specifications,
Heitmeyer and colleagues developed a finite state model for
SCR [8, 9] and have developed tools for creating and ana-
lyzing SCR specifications. The work assumes the basic
notation and format for specifying required behavior intro-
3

duced by the A-7 (e.g., conditions, events, terms, modes,
tables) and applies it in the context of the Four-Variable
model (e.g., specifying required system behavior in terms
of monitored and controlled variables).

3. The Light Control System
The example in this paper is based upon the Light Con-

trol System (LCS) case study [10] reported by Heitmeyer
and Bharadwaj in [11]. The LCS controls the lights in the
rooms and corridors of a building, attempting to keep
energy use low by making use of natural light when possi-
ble and by turning off lights in unused rooms. As in [11],
this paper is concerned with specifying light control for a
single, typical office. Each office has a window, wall lights,
and window lights. Users can determine office brightness
when the room is occupied and when it is temporarily unoc-
cupied. The system uses door and motion sensors to deter-
mine when a room is empty, and an outdoor light sensor to
determine how much light is provided by the office win-
dow. A panel in the facility manager’s office alerts him to
the failure of some sensors, allows him to override some
settings, and to determine how long an office should be
empty to be considered unoccupied.

The following two sections discuss our system require-
ments, system design, and software design specifications of
the LCS.

4. System Requirements and System
Design of the LCS
The LCS System Requirements Document is a typical

small SCR requirements document. Six functions specify
the required values of six controlled variables denoting
whether wall and window lights are on, their brightness,
and the color of two lights indicating sensor malfunctions.
Table 1 illustrates several controlled variable declarations,
listing the name and type of each variable and describing
how to interpret the values. The functions are written in
terms of 14 monitored variables (see Table 2), one mode
class, and five terms. The monitored variables include vari-
ables denoting light settings chosen by the office occupant,
default settings, ambient light level in the office, whether
the office is occupied, whether values of certain variables
are unobtainable, and time. The terms denote current light
settings in the office, whether the facilities manager has
overridden the office settings, and how much light must be
provided by the office lights. Table 3 provides an example

specification of the required value of cWallLights, whose
declaration appears in Table 1. The first column of the
event table describes when cWallLights assumes the value
on; the second describes when it assumes the value off.

The LCS System Design Document diverges from the
model presented in [7] which uses abstract inputs and out-
puts and monitored and controlled variables to specify the
behavior of physical devices. In contrast, the LCS system
design specifies the behavior of virtual devices which
abstract from details of the physical devices that the devel-
opers judge are likely to change. The system design uses
virtual device inputs, virtual device outputs, and monitored
and controlled variables to specify the virtual device behav-
ior. We replace the IN relation of Parnas and Madey with
INv, the virtual IN relation which specifies the behavior of
the virtual device input variables, Iv

INv: M → Iv

and we replace the OUT relation with OUTv, the virtual
OUT relation which specifies the behavior of the virtual
device output variables, Ov

OUTv: Ov → C

The LCS System Design Document consists of dictio-
naries declaring the types, monitored and controlled vari-
ables, and virtual device input and output variables (Table 4
illustrates the declaration of a virtual output variable).
Functions from virtual device output variables to controlled
variables specify the effects of setting the virtual outputs.
Functions from monitored variables to virtual device input

Table 1: Selected Controlled Variables

Variable Type Physical Interpretation

cWallLL yLightLevel cWallLL denotes the brightness of
the office wall lights.

cWallLights yLight cWallLights = on iff the office
wall lights are lit.

Table 2: Selected Monitored Variables

Variable Type Physical Interpretation

mChosenLSVal yLightLevel mChosenLSVal denotes the
value indicated by the slider
labelled “Chosen Light Scene
Value” in the office control
panel.

mWallLights yLight mWallLights = on iff someone is
pressing the button labelled
“Wall Lights” in the office
control panel.

Table 3: Required Value of cWallights

Events

@T(mWallLights =
on) when (cWallLights
= off) or @T(mcStatus
= occupied)

@T(mWallLights =
off) when cWallLights
= on) or @T(mcStatus
= unoccupied) or
@T(mFMOverride)
when (not mcStatus =
occupied)

cWallLights = on off
4

variables specify the value of the virtual inputs. Table 5 is a

condition table specifying the value of cWallLights as a
function of the virtual output ovWallLights. When the Bool-
ean ovWallLights is true, cWallLights is on; otherwise it is
off.

5. Software Design of the LCS
Our software design of the LCS, modeled on the A-7

design, consists of a software module guide and a set of
specifications of module behavior. Table 6 outlines the
module structure in the LCS software module guide. Only
modules hiding decisions recorded in the System Require-
ments and System Design documents are included in our
LCS design. Modules whose names are listed in bold were
lifted whole from the A-7 module guide. Their secrets, and
hence their responsibilities, were minimally adapted to the
LCS (with exceptions discussed below). Modules whose
names are in italics represent work to be done; the list
includes them to show what has been left out of this paper.
The remaining—leaf—modules, indicated by regular type,
provide a set of virtual devices (see submodules of the
Device Interface Module), specify the required values of
malfunction lights and office lights (see submodules of
Function Drivers), provide a means to determine the current
system mode (Mode Determination Module), and provide a
means to determine the value of monitored variables and
terms and to set the value of controlled variables (see Sys-
tem Value Module).

System Value and Function Driver are the modules
whose secrets are most affected by changes in SCR require-
ments as compared to A-7 requirements. Both reflect the
SCR specification of required values of controlled vari-
ables, which represent physical quantities, as opposed to the
specification of the values of output devices in A-7 require-
ments. The change to the Function Driver secret is a word-
ing change from referring to outputs to referring to
controlled variables. The change to the System Value secret
is more substantial: the module must not only provide val-
ues to its users, it must also allow its users to set the values
of controlled variables. This was not needed in the A-7
design since the Function Driver submodules set the output
devices directly. In the revised SCR design, Function
Driver submodules set the value of controlled variables.

System Value hides how to accomplish the changes to the
controlled variable values.

Table 6: LCS Module Decomposition
1. Hardware Hiding

1.1. Extended Computer
1.2. Device Interface Module

1.2.1. Door Closed Contact
1.2.2. Facilities Manager Console
1.2.3. Motion Detector
1.2.4. Office Control Panel
1.2.5. Outdoor Light Sensor
1.2.6. Timer
1.2.7. Wall Lights
1.2.8. Window Lights

2. Behavior Hiding
2.1. Function Drivers

2.1.1. Malfunction Lights
2.1.2. Office Lights

2.2. Shared Services
2.2.1. Mode Determination
2.2.2. System Value

3. Software Decision

Specifications of submodules of the Device Interface
Module, which hide from their users how the physical
devices are likely to change, all have a similar form (see
Table 7). Each is an abstract interface defining a virtual

device. Each abstract interface lists the declarations of the
virtual device input variables (denoted Iv in the Contents
column to distinguish them from the physical inputs that I
denotes) which are outputs to users of the interface. Func-
tions (which comprise INv) specify the values of the virtual
inputs in terms of monitored variables. The interface also
lists the declarations of the virtual device output variables
(Ov) which are inputs from users (see Table 4). Functions
specifying the values of controlled variables in terms of the
virtual device output variables (which comprise OUTv)
describe the effects of users setting the virtual output vari-
ables (see Table 5). An access program table defines the

Table 4: Virtual Output Declaration

Name Type

ovWallLight Boolean

Table 5: Effect of ovWallLights

Conditions

ovWallLights NOT ovWallLights

cWallLights = on off

Table 7: Device Interface Abstract Interface

Section Contents

Output Variables Declaration of Iv, virtual device

input variables

Value of Output Variables INv: M → Iv

Input Variables Declaration of Ov, virtual device

output variables

Effects of Input Variables OUTv: Ov → C

Access Programs and Events
Signalled

Protocol for using the module

Dictionaries Types, monitored variables,
controlled variables
5

protocol that user programs follow to obtain the value of
virtual device inputs and to set the value of virtual device
outputs. Table 8 specifies a program which accepts as an
input a value whose type is described by the declaration of
ovWallLights (see Table 4); Table 5 specifies the effect of
calling sovWallLights. Standard SCR event notation
defines the events signalled by the abstract interface in
terms of virtual device input variables. The complete set of
Device Interface abstract interfaces is followed by dictio-
naries defining types, monitored variables, and controlled
variables referenced in the abstract interfaces.

The organization of the System Value Module abstract
interface (see Table 9), which hides how to determine the
value of monitored variables and certain terms and how to
set the value of controlled variables, is similar to that of
Device Interface. The interface lists declarations of moni-

tored variables and terms, which are outputs to users. In
contrast to the outputs of the Device Interface abstract inter-
face, no functions specify the value of the outputs; the
physical interpretation provided by the declarations
describes the values of the monitored variables (see
Table 2) and terms. The abstract interface lists the declara-
tions of controlled variables which are the inputs from
users. As with the monitored variables and terms, no func-
tions specify the effects of setting the controlled variables;
the physical interpretations provided by the controlled vari-
able declarations describe the effect of users setting the val-
ues of the controlled variables (see Table 1). An access
program table defines the protocol that user programs fol-
low to obtain the value of monitored variables and terms
and to set the value of controlled variables. Table 10 pro-
vides an example specification of the program sWallLights,
which accepts an input of type yLight (on or off) as speci-
fied by Table 1. The effect of the program is to set the wall
lights in the office on or off, as described by the physical
interpretation of cWallLights. Standard SCR event notation
defines the events signalled by the abstract interface in

terms of controlled variables and terms. The abstract inter-
face concludes with a dictionary defining the types used.

Each function driver specification (see Table 11),
which hides the rules that determine the required value of
the controlled variables, lists the declarations of the con-
trolled variables set by the function driver and the functions
that specify the values of the controlled variables (see
Table 3). The function driver specification includes dictio-
naries declaring the types, modes, monitored variables, and
terms used by the function.

Table 12 lists the contents of the mode determination
module which hide the rules determining the current system
modes (there may be multiple mode classes, allowing the
system to be in several modes simultaneously). The current
mode of each declared mode class are the outputs to users.
An access program table defines the protocol that user pro-
grams follow to obtain the current mode of each mode
class. SCR event notation defines the events signalled by
the abstract interface in terms of the mode classes.

6. Discussion
The approach to documenting requirements and design

discussed above partitions the decisions of development in
such a way that distinguishing among system requirements,
system design, and software design decisions, and record-
ing and organizing those decisions is a relatively straight
forward task. Separation of concerns serves to decompose
the complex and difficult activity of system development
into a set of relatively distinct and simpler activities. The
nature of the decomposition eliminates some of the redun-
dancy by using the same descriptions of behavior in
requirements and design by organizing development docu-

Table 8: Device Interface Program Table Entry

Program Parameters Description

sovWallLights input ovWallLights

Table 9: System Value Abstract Interface

Section Contents

Output Variables Declarations of monitored
variables (M) and terms

Input Variables Declarations of C, controlled
variables

Access Programs and Events
Signalled

Protocol for using the module

Dictionaries Types

Table 10: System Value Program Table Entry

Program Parameters Description

sWallLights input cWallLights

Table 11: Function Driver Specification

Section Contents

Controlled Variables Declarations of C, controlled variables

Behavior REQ: M → C

Dictionaries Types, modes, monitored variables (C),
terms

Table 12: Mode Determination Abstract Interface

Section Contents

Output Variables Declarations of mode classes

Access Programs and Events
Signalled

Protocol for using the module
6

mentation in such a way that where there is overlap of
requirements and design decisions, those decisions are
recorded once and shared among the work products. This
should eliminate much effort required to keep consistent
redundant representations of requirements decisions
recorded in widely divergent languages.

We have adapted the specifications of modules that
hide system requirements and design decisions—Function
Driver, Device Interface, Mode Determination, System
Value—so that the declarations of monitored and controlled
variables, terms, virtual inputs and outputs, and the table
functions that specify their values in the modules are identi-
cal in contents and notation to how the same decisions are
recorded in the system requirements and system design.
Thus engineers do not need to document system require-
ments and design decisions again in the software design.
Nor do they need another notation for capturing those deci-
sions. For the documents that we discuss, the concept of
identity replaces the concept of traceability.

We have diverged from the Four-Variable Model of [7]
by specifying the system design in terms of virtual devices,
which hide aspects of the physical devices that are likely to
change, rather than in terms of physical devices. This can
be useful since development projects often choose devices
fairly late, when software designs have been developed
based on designers’ best guesses. And even when devices
are chosen early, the choices can be changed for many rea-
sons, including the inability of the vendor to deliver, or the
unexpected availability of a cheaper or more effective
device. Specifying system design in terms of virtual devices
should make it easier to adapt the system and software
design documents and the software to such changes. Basing
system design on virtual devices allows system and soft-
ware design to progress while reducing the risk of signifi-
cant impact making or changing selections of physical
devices.

We have diverged from the A-7 model of software
design in several ways. We have adapted the software mod-
ule guide by identifying a module that hides how to set the
value of controlled variables. We have adapted the specifi-
cations of modules that hide system requirements and
design decisions—function drivers, device interface mod-
ules, and System Value—so that the declarations of moni-
tored and controlled variables, terms, virtual inputs and
outputs, and the table functions that specify their values in
the modules are identical in contents and notation to how
the same decisions are recorded in the system requirements
and system design.

Acknowledgments
The seeds of this paper were comments made over a

decade ago by Dave Weiss and a more recent paper by Con-
nie Heitmeyer and Ramesh Bharadwaj [11]. Thoughtful and
detailed suggestions from Heitmeyer, Bharadwaj, Weiss,
and anonymous reviewers led to improvements in the
paper. The LCS System Requirement, System Design, and

Software Design Documents described in this paper were
derived from the LCS specifications described in [11].

REFERENCES
[1] A. Kozlenkov, A. Zisman, Are their Design Specifica-
tions Consistent with our Requirements?, IEEE Joint Inter-
national Requirements Engineering Conference,2002, 145-
154.
[2] T.A. Alspaugh, S.R. Faulk, K.H. Britton, R.A. Parker,
D.L. Parnas, J.E. Shore, Software Requirements for the A-
7E Aircraft, NRL Final Report 5530, 1992.
[3] K.L. Heninger, Specifying Software Requirements for
Complex Systems: New Techniques and Their Application,
IEEE Trans. on Softw. Eng., SE-6(1), 1980, 2-12.
[4] D.L., Parnas, On the Criteria to be Used in Decompos-
ing Systems in Modules, Comm. of the ACM, 15(12), 1972,
1053-1058.
[5] K.H. Britton, D.L. Parnas, A-7E Software Module
Guide, NRL Memorandum Report 4702, 1981.
[6] P.C. Clements, Abstract Interface Specifications for the
A-7E Shared Services Module, NRL Memorandum Report
4863, 1982.
[7] D.L. Parnas, J. Madey, Function Documents for Com-
puter Systems, Science of Computer Programming, 25(1),
2995, 41-61.
[8] C.L. Heitmeyer, Software Cost Reduction, in J.J. Mar-
ciniak (Ed.), Encyclopedia of Software Engineering, (New
York: John Wiley, 2002), 1374-1380.
[9] C.L. Heitmeyer, R.D. Jeffords, B. Labaw, Automated
Consistency Checking of Requirements Specifications,
ACM Trans. on Softw. Eng. and Meth., 5(3), 1996, 231-261.
[10] The Light Control Case Study: Problem Description,
Journal of Universal Computer Science, 6(7), 2000.
[11] C. Heitmeyer, R. Bharadwaj, Applying the SCR
Requirements Method to the Light Control Case Study,
Journal of Universal Computer Science, 6(7), 2000, 650-
678.
7

	REWRITING REQUIREMENTS FOR DESIGN
	James Kirby, Jr.
	Code 5546
	Naval Research Laboratory
	Washington, DC 20375 USA
	ABSTRACT
	KEY WORDS
	1. Introduction
	2. A-7 and SCR

	2.1. A-7 Software Requirements
	2.2. A-7 Software Design
	2.3. SCR System Requirements and System Design
	REQ: M Æ C,
	NAT: M Æ C
	IN: M Æ I
	OUT: O Æ C
	3. The Light Control System
	4. System Requirements and System Design of the LCS
	Table 1: Selected Controlled Variables
	Table 2: Selected Monitored Variables
	Table 3: Required Value of cWallights

	INv: M Æ Iv
	OUTv: Ov Æ C
	Table 4: Virtual Output Declaration
	Table 5: Effect of ovWallLights
	5. Software Design of the LCS

	Table 6: LCS Module Decomposition
	1. Hardware Hiding
	1.1. Extended Computer
	1.2. Device Interface Module
	1.2.1. Door Closed Contact
	1.2.2. Facilities Manager Console
	1.2.3. Motion Detector
	1.2.4. Office Control Panel
	1.2.5. Outdoor Light Sensor
	1.2.6. Timer
	1.2.7. Wall Lights
	1.2.8. Window Lights

	2. Behavior Hiding
	2.1. Function Drivers
	2.1.1. Malfunction Lights
	2.1.2. Office Lights

	2.2. Shared Services
	2.2.1. Mode Determination
	2.2.2. System Value

	3. Software Decision

	Table 7: Device Interface Abstract Interface
	Table 8: Device Interface Program Table Entry
	Table 9: System Value Abstract Interface
	Table 10: System Value Program Table Entry
	Table 11: Function Driver Specification
	Table 12: Mode Determination Abstract Interface
	6. Discussion

	Acknowledgments
	REFERENCES
	[1] A. Kozlenkov, A. Zisman, Are their Design Specifica tions Consistent with our Requirements?, IEEE Joint Inter national Requirements Engineering Conference,2002, 145- 154.
	[2] T.A. Alspaugh, S.R. Faulk, K.H. Britton, R.A. Parker, D.L. Parnas, J.E. Shore, Software Requirements for the A- 7E Aircraft, NRL Final Report 5530, 1992.
	[3] K.L. Heninger, Specifying Software Requirements for Complex Systems: New Techniques and Their Application, IEEE Trans. on Softw. Eng., SE-6(1), 1980, 2-12.
	[4] D.L., Parnas, On the Criteria to be Used in Decompos ing Systems in Modules, Comm. of the ACM, 15(12), 1972, 1053-1058.
	[5] K.H. Britton, D.L. Parnas, A-7E Software Module Guide, NRL Memorandum Report 4702, 1981.
	[6] P.C. Clements, Abstract Interface Specifications for the A-7E Shared Services Module, NRL Memorandum Report 4863, 1982.
	[7] D.L. Parnas, J. Madey, Function Documents for Com puter Systems, Science of Computer Programming, 25(1), 2995, 41-61.
	[8] C.L. Heitmeyer, Software Cost Reduction, in J.J. Mar ciniak (Ed.), Encyclopedia of Software Engineering, (New York: John Wiley, 2002), 1374-1380.
	[9] C.L. Heitmeyer, R.D. Jeffords, B. Labaw, Automated Consistency Checking of Requirements Specifications, ACM Trans. on Softw. Eng. and Meth., 5(3), 1996, 231-261.
	[10] The Light Control Case Study: Problem Description, Journal of Universal Computer Science, 6(7), 2000.
	[11] C. Heitmeyer, R. Bharadwaj, Applying the SCR Requirements Method to the Light Control Case Study, Journal of Universal Computer Science, 6(7), 2000, 650- 678.

